Marte – 🌎Mineria.Space🚀 https://mineria.space Sun, 09 Feb 2025 23:06:28 +0000 es-PE hourly 1 https://wordpress.org/?v=6.7.1 Un mapa de los antiguos ríos de Marte abre nuevas posibilidades para aprender sobre el Planeta Rojo https://mineria.space/un-mapa-de-los-antiguos-rios-de-marte-abre-nuevas-posibilidades-para-aprender-sobre-el-planeta-rojo/ Sun, 09 Feb 2025 23:06:28 +0000 https://mineria.space/?p=18469 Para encontrar signos de vida en Marte, muchos científicos creen que los sistemas fluviales antiguos son buenos lugares para buscar. Es por eso que en febrero , la NASA envió su rover Perseverance al Cráter Jezero, que alberga un enorme delta en la desembocadura de un río largo y seco.

Pero, ¿cómo encuentras estos valiosos sitios? Ese es un problema que los científicos de la Tierra solo han podido resolver recientemente.

La nave espacial Mariner 9 de la NASA identificó las primeras redes de ríos marcianos en 1971, durante sus órbitas históricas alrededor del planeta rojo. La nave estaba enviando constantemente imágenes en blanco y negro del planeta, pero fue solo después de una masivapolvo La tormenta amainó que la asombrosa superficie de Marte fue revelada a los científicos que esperaban ansiosamente regresar a la Tierra. Las fotos mostradascañones corte profundo en la roca: características que los científicos reconocieron como signos claros de agua.

Con el tiempo, las imágenes de Marte siguieron mejorando, pero aún eran poco sistemáticas. Los científicos necesitaban imágenes globales más completas y de mayor calidad para estudiar cuán vastas e interconectadas eran las antiguas redes fluviales del planeta; descubrir dónde habían fluído estos ríos apuntaría a posibles sitios de desembarco. En 2017, la NASA abrió las puertas para comprender a Marte como un sistema global al liberar ocho billones de píxeles.imagen de mosaico de toda la superficie de Marte.

Tomó tres años de estudiar detenidamente esas imágenes detalladas para finalmente dar sus frutos. Un nuevo estudio,publicado en Geología en diciembre de 2020, es el primero en aprovechar el mosaico completo. Para explorar los misterios de las redes fluviales globales de Marte, Jay Dickson, un investigador del Instituto de Tecnología de California, y sus colegas mapearon las crestas dejadas por los ríos (crestas fluviales), que son esencialmente la inversa de un canal de río.

A menudo pensamos en ríos que crean valles, como las amplias llanuras aluviales del Mississippi o las escarpadas paredes del Gran Cañón. ¿Cómo puede un río formar una cresta?

Los ríos hacen dos cosas: erosionan el material y lo depositan en otro lugar. A medida que los ríos cortan, el único rastro que dejan es la ausencia de rocas que solían estar allí. Aguas abajo de los canales erosivos, los ríos pueden dejar sedimentos, acumulando un registro que más tarde, a veces mucho, mucho más tarde, se puede estudiar para comprender el medio ambiente pasado. Esos sedimentos forman crestas resistentes a la erosión. Miles de millones de años después de que los ríos marcianos establecieran tales crestas, Dickson pudo mapearlas.

Pero, ¿cómo trazas un mapa de la cordillera de un río desde el espacio? La respuesta está en las sombras.

Dickson y sus colegas determinaron qué accidentes geográficos son crestas por la forma en que proyectan sus sombras. Identificaron 68 crestas en Marte, incluidas más de una docena de nuevas, y finalmente conectaron los puntos globales de los antiguos ríos, deltas y lagos marcianos.

En general, los investigadores aclararon la confusión sobre los procesos hidrológicos a gran escala.

“Antes de nuestro mosaico global, solo podíamos documentar [el movimiento del agua y los sedimentos] a escala local”, dijo Dickson, quien pasó aproximadamente tres años uniendo la imagen compuesta. “Nuestro trabajo está mostrando una explicación plausible de cómo funcionaba Marte en su conjunto. Había grandes ríos sobre enormes extensiones que estaban depositando sedimentos por todo el lugar ”, continuó Dickson. «Con el contexto completo de la superficie de Marte, gracias a nuestro mosaico, podemos determinar con más confianza cuáles son crestas fluviales … y cuáles probablemente formadas por otro proceso».

La mayoría de las crestas que todavía están presentes en Marte se formaron hace más de tres mil quinientos millones de años, durante la parte más húmeda de la historia del planeta, y se encuentran casi en su totalidad en su hemisferio sur.

“Este [estudio] nos ayuda a comprender el alcance de estas redes fluviales”, dijo Briony Horgan, científica planetaria de la Universidad Purdue que no participó en este estudio. «Están ayudando a completar el mapa … en lugares que han experimentado mucha erosión, y es posible que no se espere que los valles se queden atrás». Ella agregó: “Están llenando los vacíos no solo en el espacio, sino [también] en el tiempo. Eso puede ayudarnos a entender si el antiguo Marte era habitable periódicamente. ¿Fue habitable persistentemente? » El siguiente paso es enviar misiones robóticas y tripuladas para estudiar estos sitios.

Decidir un lugar de aterrizaje para las misiones a Marte, que es un esfuerzo de colaboración entre cientos de científicos, no es una tarea sencilla. Elegir un sitio lleva años, comenzando con una convocatoria abierta que trae decenas de sugerencias de la comunidad científica. Después de meses de debatir, votar y debatir nuevamente, los equipos redujeron lentamente la lista de posibilidades al considerar una miríada de factores basados ​​en los objetivos científicos de la misión.

«Esto es principalmente … una misión de astrobiología, por lo que las grandes limitaciones para un lugar de aterrizaje son signos claros de un entorno acuoso, habitable y antiguo», dijo Horgan. «Es un pequeño subconjunto de lugares». Y para una misión de retorno de muestra, como la de la NASA en cursoPerseverancia misión, cuyo rover aterrizó con éxito en Marte el 18 de febrero; el sitio debe tener mucha diversidad en términos de procesos geológicos y mineralogía.

“Las crestas [fluviales] se encuentran entre los mejores objetivos para enviar rovers y, potencialmente, astronautas para estudiar”, dijo Dickson. «Estos son depósitos que registran cómo era Marte al principio de su historia … [y] pueden tener una relación más directa con el clima global de Marte al principio de su historia».

Las crestas en las llanuras aluviales también pueden ofrecer menos quebraderos de cabeza logísticos que los sitios alternativos. “Este tipo de depósitos podrían ocurrir en áreas en las que es más fácil aterrizar porque son llanuras grandes y planas”, ofreció Horgan. «Eso hace que sea un poco más fácil llegar a ellos … Si podemos llegar a ellos, deberían ayudarnos a informarnos sobre lo que está sucediendo río arriba».

Las características de los ríos ya han sido objetivos de la investigación de Marte. Los rovers Spirit y Curiosity de la NASA visitaron los cráteres Gusev y Gale , respectivamente, ambos elegidos por su abundancia de fluviodeltaic (río y delta)características. Según Horgan, quien es un co-investigador en la misión Perseverance, incluso hay algunas pequeñas crestas cerca delCráter Jezero lugar de aterrizaje. El sitio de aterrizaje ExoMars 2023 de la Agencia Espacial Europea,Oxia Planum, también fue elegido por sus características fluviodeltaicas.

Los sistemas fluviales antiguos de Marte no son tan diferentes de lo que vemos hoy en la Tierra, lo que permite a los científicos comparar los registros de rocas y las historias de los dos planetas.

“Si pudieras pasear por Marte cuando [estas características] se estaban formando, reconocerías absolutamente los paisajes”, dijo Woodward Fischer, otro científico planetario de Caltech en el estudio. “Habría algunas cosas raras sobre ellos, como si no tuvieran plantas. Pero estarías en casa «. Mire hacia el árido desierto de Atacama o el seco Valle de la Muerte, y verá canales de ríos y crestas que tienen un parecido sorprendente con sus contrapartes marcianas.

Debido a que los ríos y las llanuras aluviales circundantes acumulan sedimentos que permanecen inalterados durante largos períodos de tiempo, sus características físicas y químicas reflejan procesos y condiciones en la superficie del planeta. En el registro geológico de la Tierra, los científicos usan estas rocas para reconstruir cómo eran el clima, la atmósfera y la biosfera hace millones, incluso miles de millones, de años.

Las mismas herramientas pueden resultar útiles en Marte, aunque apenas estamos comenzando a trazar el registro geológico del planeta.

«Nuestra comprensión del registro de rocas en Marte es todavía muy poco rigurosa, totalmente en su infancia», dijo Fischer. “Uno de los mayores avances en los últimos veinte años es el reconocimiento de que Marte tiene un registro sedimentario, lo que significa que no estamos limitados a estudiar el planeta hoy. Puede hacer una pregunta sobre su historia. Hay todos estos puntos en común realmente interesantes con los registros geológicos de Marte temprano y la Tierra primitiva que no creo que nadie estuviera esperando «

Fuente: massivesci

]]>
Mapa geológico de Marte https://mineria.space/mapa-geologico-de-marte/ Sun, 09 Feb 2025 23:06:28 +0000 https://mineria.space/?p=18092 Este mapa geológico global de Marte, que registra la distribución de unidades geológicas y accidentes geográficos en la superficie del planeta a lo largo del tiempo, se basa en una variedad, calidad y cantidad sin precedentes de datos de detección remota adquiridos desde los Orbitadores Viking. Estos datos han proporcionado observaciones morfológicas, topográficas, espectrales, termofísicas, de radar y otras observaciones para su integración, análisis e interpretación en apoyo del mapeo geológico. En particular, el mapeo topográfico preciso ahora disponible ha permitido una representación morfológica consistente de la superficie para el mapeo global (mientras que las bases de imágenes de rango visual utilizadas anteriormente eran menos efectivas, porque combinaban información morfológica y de albedo y, localmente, neblina atmosférica). Además, las bases de imágenes térmicas infrarrojas utilizadas para este mapa tienden a verse menos afectadas por la neblina atmosférica y, por lo tanto, son confiables para el análisis de la morfología y textura de la superficie con una resolución incluso mayor que los productos topográficos.

Fuente: USGS

]]>
Fragmentos de roca nos muestran el pasado de Marte https://mineria.space/fragmentos-de-roca-nos-muestran-el-pasado-de-marte/ Sun, 09 Feb 2025 23:06:27 +0000 https://mineria.space/?p=18504 Actualmente Marte es un planeta de extremos: hace un frío glacial, tiene una alta radiación y está completamente seco. Pero hace miles de millones de años, Marte albergaba sistemas de lagos que podrían haber permitido vida microbiana. Según fue cambiando el clima del planeta, uno de esos lagos (en el cráter Gale de Marte) se secó lentamente. Los científicos tienen una prueba nueva de que el agua supersalina, o salmuera, se filtró profundamente a través de las grietas, entre los granos de tierra del fondo del lago reseco y alteró las capas de arcilla inferiores ricas en minerales.

Los hallazgos publicados en la edición del 9 de julio de la revista Science y dirigidos por el equipo encargado del instrumento CheMin (a bordo del rover Curiosity Mars Science Laboratory de la NASA) ayudan a comprender dónde se conserva o dónde se destruyó el registro en las rocas que manifiesta evidencias del pasado de Marte y de posibles signos de vida antigua.

“Solíamos pensar que una vez que las capas de minerales arcillosos se formaron en el fondo del lago en el cráter Gale, se quedaban así, preservando durante miles de millones de años, el momento en el que se formaron “, dijo Tom Bristow, investigador principal y autor del artículo de CheMin en el Ames Research Center de la NASA en Silicon Valley, California. “Pero las salmueras posteriores descompusieron estos minerales arcillosos en algunos lugares, lo que restableció el registro en las rocas”.

Los registros en las rocas de Marte
Marte tiene un tesoro de rocas y minerales increíblemente antiguos en comparación con la Tierra. Y con las capas de rocas intactas en el cráter Gale, los científicos sabían que sería un sitio excelente para buscar pruebas de la historia del planeta y posiblemente de la vida.

 

Usando CheMin, los científicos compararon muestras tomadas en dos áreas a 400 metros de distancia de una capa de lutita depositada hace miles de millones de años en el fondo del lago en el cráter Gale. Sorprendentemente, en un área, faltaba aproximadamente la mitad de los minerales arcillosos que esperaban encontrar. En cambio, encontraron lutitas ricas en óxidos de hierro, minerales que le dan a Marte su característico color rojo oxidado.

Los científicos sabían que las lutitas tenían aproximadamente la misma edad y comenzaron igual, cargadas de arcillas, en ambas áreas estudiadas. Entonces, ¿por qué mientras Curiosity exploraba los depósitos de arcilla sedimentaria a lo largo del cráter Gale, los parches de minerales arcillosos, y la evidencia que conservan, “desaparecieron”?

Las arcillas contienen pistas
Los minerales son como una cápsula del tiempo; proporcionan un registro de cómo era el medio ambiente en el momento en que se formaron. Los minerales arcillosos tienen agua en su estructura y demuestran que los suelos y rocas que los contienen entraron en contacto con el agua en algún momento.

“Dado que los minerales que encontramos en Marte también se forman en algunos lugares de la Tierra, podemos usar lo que sabemos sobre cómo se forman en la Tierra para decirnos lo saladas o ácidas que eran las aguas en el antiguo Marte”, dijo Liz Rampe, investigadora principal de CheMin y coautora en el Johnson Space Center de la NASA en Houston.

El trabajo anterior reveló que mientras que los lagos del cráter Gale estaban presentes, e incluso después de secarse, el agua subterránea se movía debajo de la superficie, disolviendo y transportando sustancias químicas. Después de que fueron depositadas y enterradas, algunos focos de lutitas experimentaron diferentes condiciones y procesos debido a interacciones con estas aguas, lo que cambió la mineralogía. Este proceso, conocido como “diagénesis”, a menudo complica o borra la historia previa del suelo y escribe una nueva.

La diagénesis crea un entorno subterráneo que puede sustentar la vida microbiana. De hecho, algunos hábitats muy singulares de la Tierra, en los que prosperan los microbios, se conocen como “biosferas profundas”.

“Estos son lugares excelentes para buscar evidencia de vida antigua y medir la habitabilidad”, dijo John Grotzinger, co-investigador de CheMin y coautor en el Instituto de Tecnología de California, o Caltech, en Pasadena, California. “Aunque la diagénesis puede borrar los signos de vida originales en el lago, crea los gradientes químicos necesarios para sustentar la vida subterránea, por lo que estamos muy emocionados de haber descubierto esto”.

Al comparar los detalles de los minerales de ambas muestras, el equipo concluyó que el agua salada que se filtraba a través de las capas de sedimento superpuestas, fue responsable de los cambios. A diferencia del lago de agua relativamente dulce presente cuando se formaron las lutitas, se sospecha que el agua salada proviene de lagos posteriores que existieron dentro de un ambiente más seco. Los científicos creen que estos resultados ofrecen más pruebas de los impactos del cambio climático de Marte que tuvo lugar hace miles de millones de años. También proporcionan información más detallada que luego se utiliza para guiar las investigaciones del rover Curiosity sobre la historia del Planeta Rojo. Esta información también será utilizada por el equipo del rover Perseverance Mars 2020 de la NASA mientras evalúan y seleccionan muestras de rocas para su futuro regreso a la Tierra.

“Hemos aprendido algo muy importante: hay algunas partes del registro en las rocas marcianas que no son tan buenas para preservar muestras de posible vida pasada del planeta”, dijo Ashwin Vasavada, científico del proyecto Curiosity y coautor en el JPL de la NASA. “Lo bueno es que encontramos a ambos muy juntos en el cráter Gale, y podemos usar la mineralogía para saber cuál es cuál”.

Curiosity se encuentra en la fase inicial de investigar la transición a una “unidad portadora de sulfato”, o rocas que se cree que se formaron mientras el clima de Marte se secaba.

La misión es administrada por JPL, una división de Caltech, para la Science Mission Directorate de la NASA, Washington. Los colegas de la Astromaterials Research and Exploration Science Division de la NASA en Johnson y el Centro de Vuelo Espacial Goddard de la NASA en Greenbelt, Maryland, también son autores del artículo, así como otras instituciones que trabajan con Curiosity.

Via: NASA/JPL-Caltech

]]>